Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606569

RESUMO

BackgroundAs increasing antibiotic resistance in Acinetobacter baumannii poses a global healthcare challenge, understanding its evolution is crucial for effective control strategies.AimWe aimed to evaluate the epidemiology, antimicrobial susceptibility and main resistance mechanisms of Acinetobacter spp. in Spain in 2020, and to explore temporal trends of A. baumannii.MethodsWe collected 199 single-patient Acinetobacter spp. clinical isolates in 2020 from 18 Spanish tertiary hospitals. Minimum inhibitory concentrations (MICs) for nine antimicrobials were determined. Short-read sequencing was performed for all isolates, and targeted long-read sequencing for A. baumannii. Resistance mechanisms, phylogenetics and clonality were assessed. Findings on resistance rates and infection types were compared with data from 2000 and 2010.ResultsCefiderocol and colistin exhibited the highest activity against A. baumannii, although colistin susceptibility has significantly declined over 2 decades. A. non-baumannii strains were highly susceptible to most tested antibiotics. Of the A. baumannii isolates, 47.5% (56/118) were multidrug-resistant (MDR). Phylogeny and clonal relationship analysis of A. baumannii revealed five prevalent international clones, notably IC2 (ST2, n = 52; ST745, n = 4) and IC1 (ST1, n = 14), and some episodes of clonal dissemination. Genes bla OXA-23, bla OXA-58 and bla OXA-24/40 were identified in 49 (41.5%), eight (6.8%) and one (0.8%) A. baumannii isolates, respectively. ISAba1 was found upstream of the gene (a bla OXA-51-like) in 10 isolates.ConclusionsThe emergence of OXA-23-producing ST1 and ST2, the predominant MDR lineages, shows a pivotal shift in carbapenem-resistant A. baumannii (CRAB) epidemiology in Spain. Coupled with increased colistin resistance, these changes underscore notable alterations in regional antimicrobial resistance dynamics.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , beta-Lactamases/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Genômica , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
2.
Int J Antimicrob Agents ; 63(5): 107150, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513748

RESUMO

OBJECTIVES: To analyse the impact of the most clinically relevant ß-lactamases and their interplay with low outer membrane permeability on the activity of cefiderocol, ceftazidime/avibactam, aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/xeruborbactam and meropenem/nacubactam against recombinant Escherichia coli strains. METHODS: We constructed 82 E. coli laboratory transformants expressing the main ß-lactamases circulating in Enterobacterales (70 expressing single ß-lactamase and 12 producing double carbapenemase) under high (E. coli TG1) and low (E. coli HB4) permeability conditions. Antimicrobial susceptibility testing was determined by reference broth microdilution. RESULTS: Aztreonam/avibactam, cefepime/zidebactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam were active against all E. coli TG1 transformants. Imipenem/relebactam, meropenem/vaborbactam, cefepime/taniborbactam and cefepime/enmetazobactam were also highly active, but unstable against most of MBL-producing transformants. Combination of ß-lactamases with porin deficiency (E. coli HB4) did not significantly affect the activity of aztreonam/avibactam, cefepime/zidebactam, cefiderocol or meropenem/nacubactam, but limited the effectiveness of the rest of carbapenem- and cefepime-based combinations. Double-carbapenemase production resulted in the loss of activity of most of the compounds tested, an effect particularly evident for those E. coli HB4 transformants in which MBLs were present. CONCLUSIONS: Our findings highlight the promising activity that cefiderocol and new ß-lactam/ß-lactamase inhibitors have against recombinant E. coli strains expressing widespread ß-lactamases, including when these are combined with low permeability or other enzymes. Aztreonam/avibactam, cefiderocol, cefepime/zidebactam and meropenem/nacubactam will help to mitigate to some extent the urgency of new compounds able to resist MBL action, although NDM enzymes represent a growing challenge against which drug development efforts are still needed.

3.
Int J Antimicrob Agents ; 62(4): 106935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541530

RESUMO

OBJECTIVES: In order to inform and anticipate potential strategies aimed at combating KPC-producing Klebsiella pneumoniae infections, we analysed imipenem/relebactam and ceftazidime/avibactam single-step mutant frequencies, resistance development trajectories, differentially selected resistance mechanisms and their associated fitness cost using four representative high-risk K. pneumoniae clones. METHODS: Mutant frequencies and mutant preventive concentrations were determined using agar plates containing incremental concentrations of ß-lactam/ß-lactamase inhibitor. Resistance dynamics were determined through incubation for 7 days in 10 mL MH tubes containing incremental concentrations of each antibiotic combination up to their 64 × baseline MIC. Two colonies per strain from each experiment were characterized by antimicrobial susceptibility testing, whole genome sequencing and competitive growth assays (to determine in vitro fitness). KPC variants associated with imipenem/relebactam resistance were characterized by cloning and biochemical experiments, atomic models and molecular dynamics simulation studies. RESULTS: Imipenem/relebactam prevented the emergence of single-step resistance mutants at lower concentrations than ceftazidime/avibactam. In three of the four strains evaluated, imipenem/relebactam resistance development emerged more rapidly, and in the ST512/KPC-3 clone reached higher levels compared to baseline MICs than for ceftazidime/avibactam. Lineages evolved in the presence of ceftazidime/avibactam showed KPC substitutions associated with high-level ceftazidime/avibactam resistance, increased imipenem/relebactam susceptibility and low fitness costs. Lineages that evolved in the presence of imipenem/relebactam showed OmpK36 disruption, KPC modifications (S106L, N132S, L167R) and strain-specific substitutions associated with imipenem/relebactam resistance and high fitness costs. Imipenem/relebactam-selected KPC derivatives demonstrated enhanced relebactam resistance through important changes affecting relebactam recognition and positioning. CONCLUSIONS: Our findings anticipate potential resistance mechanisms affecting imipenem/relebactam during treatment of KPC-producing K. pneumoniae infections.

4.
Antibiotics (Basel) ; 12(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37370318

RESUMO

The OXA-10 class D ß-lactamase has been reported to contribute to carbapenem resistance in non-fermenting Gram-negative bacilli; however, its contribution to carbapenem resistance in Enterobacterales is unknown. In this work, minimum inhibitory concentrations (MICs), whole genome sequencing (WGS), cloning experiments, kinetic assays, molecular modelling studies, and biochemical assays for carbapenemase detection were performed to determine the impact of OXA-10 production on carbapenem resistance in two XDR clinical isolates of Escherichia coli with the carbapenem resistance phenotype (ertapenem resistance). WGS identified the two clinical isolates as belonging to ST57 in close genomic proximity to each other. Additionally, the presence of the blaOXA-10 gene was identified in both isolates, as well as relevant mutations in the genes coding for the OmpC and OmpF porins. Cloning of blaOXA-10 in an E. coli HB4 (OmpC and OmpF-deficient) demonstrated the important contribution of OXA-10 to increased carbapenem MICs when associated with porin deficiency. Kinetic analysis showed that OXA-10 has low carbapenem-hydrolysing activity, but molecular models revealed interactions of this ß-lactamase with the carbapenems. OXA-10 was not detected with biochemical tests used in clinical laboratories. In conclusion, the ß-lactamase OXA-10 limits the activity of carbapenems in Enterobacterales when combined with low permeability and should be monitored in the future.

5.
Antimicrob Agents Chemother ; 67(5): e0150522, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195077

RESUMO

Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.


Assuntos
Anti-Infecciosos , Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Carbapenêmicos/farmacologia , Sideróforos/farmacologia , Cefalosporinas/farmacologia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
6.
J Clin Microbiol ; 61(6): e0175122, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37199638

RESUMO

MALDI-TOF MS is considered to be an important tool for the future development of rapid microbiological techniques. We propose the application of MALDI-TOF MS as a dual technique for the identification of bacteria and the detection of resistance, with no extra hands-on procedures. We have developed a machine learning approach that uses the random forest algorithm for the direct prediction of carbapenemase-producing Klebsiella pneumoniae (CPK) isolates, based on the spectra of complete cells. For this purpose, we used a database of 4,547 mass spectra profiles, including 715 unduplicated clinical isolates that are represented by 324 CPK with 37 different ST. The impact of the culture medium was determinant in the CPK prediction, being that the isolates were tested and cultured in the same media, compared to the isolates used to build the model (blood agar). The proposed method has an accuracy of 97.83% for the prediction of CPK and an accuracy of 95.24% for the prediction of OXA-48 or KPC carriage. For the CPK prediction, the RF algorithm yielded a value of 1.00 for both the area under the receiver operating characteristic curve and the area under the precision-recall curve. The contribution of individual mass peaks to the CPK prediction was determined using Shapley values, which revealed that the complete proteome, rather than a series of mass peaks or potential biomarkers (as previously suggested), is responsible for the algorithm-based classification. Thus, the use of the full spectrum, as proposed here, with a pattern-matching analytical algorithm produced the best outcome. The use of MALDI-TOF MS coupled with machine learning algorithm processing enabled the identification of CPK isolates within only a few minutes, thereby reducing the time to detection of resistance.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/microbiologia , Aprendizado de Máquina
7.
J Antimicrob Chemother ; 78(5): 1195-1200, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36918743

RESUMO

OBJECTIVES: To describe and characterize the emergence of resistance to ceftolozane/tazobactam, ceftazidime/avibactam and imipenem/relebactam in a patient receiving ceftazidime/avibactam treatment for an MDR Pseudomonas aeruginosa CNS infection. METHODS: One baseline (PA1) and two post-exposure (PA2 and PA3) isolates obtained before and during treatment of a nosocomial P. aeruginosa meningoventriculitis were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. The impact on ß-lactam resistance of mutations in blaPDC and mexR was determined through cloning experiments and complementation assays. RESULTS: Isolate PA1 showed baseline resistance mutations in DacB (I354A) and OprD (N142fs) conferring resistance to conventional antipseudomonals but susceptibility to ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. Post-exposure isolates showed two divergent ceftazidime/avibactam-resistant phenotypes associated with distinctive mutations affecting the intrinsic P PDC ß-lactamase (S254Ins) (PA2: ceftolozane/tazobactam and ceftazidime/avibactam-resistant) or MexAB-OprM negative regulator MexR in combination with modification of PBP3 (PA3: ceftazidime/avibactam and imipenem/relebactam-relebactam-resistant). Cloning experiments demonstrated the role of PDC modification in resistance to ceftolozane/tazobactam and ceftazidime/avibactam. Complementation with a functional copy of the mexR gene in isolate PA3 restored imipenem/relebactam susceptibility. CONCLUSIONS: We demonstrated how P. aeruginosa may simultaneously develop resistance and compromise the activity of new ß-lactam/ß-lactamase inhibitor combinations when exposed to ceftazidime/avibactam through selection of mutations leading to PDC modification and up-regulation of MexAB-OprM-mediated efflux.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Humanos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Cefalosporinase , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Tazobactam/farmacologia , Combinação de Medicamentos , Imipenem/farmacologia , Imipenem/uso terapêutico , Pseudomonas aeruginosa/genética , Testes de Sensibilidade Microbiana
8.
Int J Antimicrob Agents ; 61(4): 106738, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736925

RESUMO

Metallo-ß-lactamase (MBL)-producing Enterobacterales are of particular concern because they are widely disseminated and difficult to treat, being resistant to almost all ß-lactam antibiotics. Aztreonam is not hydrolysed by MBLs but is labile to serine ß-lactamases (SBLs), which are usually co-produced by MBL-producing Enterobacterales. This study investigated the activity of aztreonam in combination with novel ß-lactamase inhibitors (BLIs) against a national multi-centre study collection of strains co-producing MBLs and SBLs. Fifty-five clinical isolates co-producing MBLs (41 VIM producers, 10 NDM producers and 4 IMP producers) and SBLs were selected, and whole-genome sequencing (WGS) was performed. The minimum inhibitory concentration (MIC) values of aztreonam, aztreonam/avibactam, aztreonam/relebactam, aztreonam/zidebactam, aztreonam/taniborbactam, aztreonam/vaborbactam and aztreonam/enmetazobactam were determined. ß-lactam/BLI resistance mechanisms were analysed by WGS. All BLIs decreased the MIC values of aztreonam for strains that were not susceptible to aztreonam. Aztreonam/zidebactam (MIC ≤1 mg/L for 96.4% of isolates), aztreonam/avibactam (MIC ≤1 mg/L for 92.7% of isolates) and aztreonam/taniborbactam (MIC ≤1 mg/L for 87.3 % of isolates) were the most active combinations. For other aztreonam/BLI combinations, 50-70% of the isolates yielded MIC values ≤1 mg/L. WGS data revealed that mutations in PBP3, defective OmpE35/OmpK35 porins, and the presence of extended-spectrum ß-lactamases and class C ß-lactamases were some of the resistance mechanisms involved in reduced susceptibility to aztreonam/BLIs. Combinations of aztreonam with new BLIs show promising activity against Enterobacterales co-producing MBLs and SBLs, particularly aztreonam/zidebactam, aztreonam/avibactam and aztreonam/taniborbactam. The present results show that these novel drugs may represent innovative therapeutic strategies by their use in yet-unexplored combinations as solutions for difficult-to-treat infections.


Assuntos
Aztreonam , Inibidores de beta-Lactamases , Aztreonam/farmacologia , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Espanha , Compostos Azabicíclicos/farmacologia , Testes de Sensibilidade Microbiana , Combinação de Medicamentos
9.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851088

RESUMO

Staphylococcus aureus is regarded as a threatening bacterial pathogen causing invasive pneumonia in healthcare settings and in the community. The continuous emergence of multidrug resistant strains is narrowing the treatment options for these infections. The development of an effective S. aureus vaccine is, therefore, a global priority. We have previously developed a vaccine candidate, 132 ΔmurI Δdat, which is auxotrophic for D-glutamate, and protects against sepsis caused by S. aureus. In the present study, we explored the potential of this vaccine candidate to prevent staphylococcal pneumonia, by using an acute lung infection model in BALB/c mice. Intranasal inoculation of the vaccine strain yielded transitory colonization of the lung tissue, stimulated production of relevant serum IgG and secretory IgA antibodies in the lung and distal vaginal mucosa and conferred cross-protection to acute pneumonia caused by clinically important S. aureus strains. Although these findings are promising, additional research is needed to minimize dose-dependent toxicity for safer intranasal immunization with this vaccine candidate.

10.
J Antimicrob Chemother ; 77(10): 2809-2815, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35904000

RESUMO

OBJECTIVES: To evaluate the activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against a clinical and laboratory collection of ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa ß-lactamase mutants. METHODS: The activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam, cefepime/zidebactam and comparators was evaluated against a collection of 30 molecularly characterized ceftolozane/tazobactam- and/or ceftazidime/avibactam-resistant P. aeruginosa isolates from patients previously treated with cephalosporins. To evaluate how the different ß-lactamases in the clinical isolates affected the resistance to these agents, a copy of each blaPDC, blaOXA-2 and blaOXA-10 ancestral and mutant allele from the clinical isolates was cloned in pUCp24 and expressed in dual blaPDC-oprD (for blaPDC-like genes) or single oprD (for blaOXA-2-like and blaOXA-10-like genes) PAO1 knockout mutants. MICs were determined using reference methodologies. RESULTS: For all isolates, MICs were higher than 4 and/or 8 mg/L for ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Cefiderocol was the most active agent, showing activity against all isolates, except one clinical isolate that carried an R504C substitution in PBP3 (MIC = 16 mg/L). Imipenem/relebactam was highly active against all isolates, except two clinical isolates that carried the VIM-20 carbapenemase. Cefepime/zidebactam and cefepime/taniborbactam displayed activity against most of the isolates, but resistance was observed in some strains with PBP3 amino acid substitutions or that overexpressed mexAB-oprM or mexXY efflux pumps. Evaluation of transformants revealed that OXA-2 and OXA-10 extended-spectrum variants cause a 2-fold increase in the MIC of cefiderocol relative to parental enzymes. CONCLUSIONS: Cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam show promising and complementary in vitro activity against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa. These agents may represent potential therapeutic options for ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa infections.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Ácidos Borínicos , Ácidos Carboxílicos , Cefepima/farmacologia , Cefepima/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Ciclo-Octanos , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Piperidinas , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia , Tazobactam/uso terapêutico , beta-Lactamases/genética
11.
Mar Drugs ; 20(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621949

RESUMO

Three new diterpene alkaloids, (+)-8-epiagelasine T (1), (+)-10-epiagelasine B (2), and (+)-12-hydroxyagelasidine C (3), along with three known compounds, (+)-ent-agelasine F (4), (+)-agelasine B (5), and (+)-agelasidine C (6), were isolated from the sponge Agelas citrina, collected on the coasts of the Yucatán Peninsula (Mexico). Their chemical structures were elucidated by 1D and 2D NMR spectroscopy, HRESIMS techniques, and a comparison with literature data. Although the synthesis of (+)-ent-agelasine F (4) has been previously reported, this is the first time that it was isolated as a natural product. The evaluation of the antimicrobial activity against the Gram-positive pathogens Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis showed that all of them were active, with (+)-10-epiagelasine B (2) being the most active compound with an MIC in the range of 1-8 µg/mL. On the other hand, the Gram-negative pathogenes Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were also evaluated, and only (+)-agelasine B (5) showed a moderate antibacterial activity with a MIC value of 16 µg/mL.


Assuntos
Agelas , Anti-Infecciosos , Agelas/química , Animais , Antibacterianos/química , Anti-Infecciosos/química , Alcaloides Diterpenos , México , Testes de Sensibilidade Microbiana , Estrutura Molecular
13.
Microbiol Spectr ; 10(1): e0273421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138195

RESUMO

Carbapenem resistance is increasing among Gram-negative bacteria, including the genus Acinetobacter. This study aimed to characterize, for the first time, the development of carbapenem resistance in clinical isolates of Acinetobacter junii and Acinetobacter nosocomialis conferred by the acquisition of a plasmid-borne blaOXA-24/40 gene and also to characterize the dissemination of this gene between species of Acinetobacter. Carbapenem-resistant A. nosocomialis HUAV-AN66 and A. junii HUAV-AJ77 strains were isolated in the Arnau de Vilanova Hospital (Spain). The genomes were sequenced, and in silico analysis were performed to characterize the genetic environment and the OXA-24/40 transmission mechanism. Antibiotic MICs were determined, and horizontal transfer assays were conducted to evaluate interspecies transmission of OXA-24/40. Carbapenems MICs obtained were ≥64 mg/L for HUAV-AN66 and HUAV-AJ77. Genome analysis revealed the presence in both strains of a new plasmid, designated pHUAV/OXA-24/40, harboring the carbapenem-resistance gene blaOXA-24/40 and flanked by sequences XerC/XerD. pHUAV/OXA-24/40 was successfully transferred from A. nosocomialis and A. junii to a carbapenem-susceptible A. baumannii strain, thus conferring carbapenem resistance. A second plasmid (pHUAV/AMG-R) was identified in both clinical isolates for the successful horizontal transfer of pHUAV/OXA-24/40. blaOXA-24/40-carrying plasmids of the GR12 group and showing high identity with pHUAV/OXA-24/40 were identified in at least 8 Acinetobacter species. In conclusion the carbapenemase OXA-24/40 is described for the first time in A. nosocomialis and A. junii. In both isolates the blaOXA-24/40 gene was located in the GR12 pHUAV/OXA-24/40 plasmid. GR12 plasmids are implicated in the dissemination and spread of carbapenem resistance among Acinetobacter species. IMPORTANCE Acinetobacter baumannii is one of the most relevant pathogens in terms of antibiotic resistance. The main resistance mechanisms are the carbapenem-hydrolyzing class D ß-lactamases (CHDLs), especially OXA-23 and OXA-24/40. In addition to A. baumannii, there are other species within the genus Acinetobacter, which in general exhibit much lower resistance rates. In this work we characterize for the first time two clinical isolates of Acinetobacter nosocomialis and Acinetobacter junii, isolated in the same hospital, carrying the carbapenemase OXA-24/40 and displaying high resistance rates to carbapenems. By means of bioinformatics analysis we have also been able to characterize the mechanism by which this carbapenemase is horizontally transferred interspecies of Acinetobacter spp. The dissemination of carbapenemase OXA-24/40 between non-baumannii Acinetobacter species is concerning since it prevents the use of most ß-lactam antibiotics in the fight against these resistant isolates.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Transferência Genética Horizontal , Acinetobacter/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Genoma Bacteriano , Genômica , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Plasmídeos/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
14.
Antimicrob Agents Chemother ; 66(2): e0206721, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930034

RESUMO

Infections caused by ceftolozane-tazobactam and ceftazidime-avibactam-resistant P. aeruginosa infections are an emerging concern. We aimed to analyze the underlying ceftolozane-tazobactam and ceftazidime-avibactam resistance mechanisms in all multidrug-resistant or extensively drug-resistant (MDR/XDR) P. aeruginosa isolates recovered during 1 year (2020) from patients with a documented P. aeruginosa infection. Fifteen isolates showing ceftolozane-tazobactam and ceftazidime-avibactam resistance were evaluated. Clinical conditions, previous positive cultures, and ß-lactams received in the previous month were reviewed for each patient. MICs were determined by broth microdilution. Multilocus sequence types (MLSTs) and resistance mechanisms were determined using short- and long-read whole-genome sequencing (WGS). The impact of Pseudomonas-derived cephalosporinases (PDCs) on ß-lactam resistance was demonstrated by cloning into an ampC-deficient PAO1 derivative (PAOΔC) and construction of 3D models. Genetic support of acquired ß-lactamases was determined in silico from high-quality hybrid assemblies. In most cases, the isolates were recovered after treatment with ceftolozane-tazobactam or ceftazidime-avibactam. Seven isolates from different sequence types (STs) owed their ß-lactam resistance to chromosomal mutations and all displayed specific substitutions in PDC: Phe121Leu and Gly222Ser, Pro154Leu, Ala201Thr, Gly214Arg, ΔGly203-Glu219, and Glu219Lys. In the other eight isolates, the ST175 clone was overrepresented (6 isolates) and associated with IMP-28 and IMP-13, whereas two ST1284 isolates produced VIM-2. The cloned PDCs conferred enhanced cephalosporin resistance. The 3D PDC models revealed rearrangements affecting residues involved in cephalosporin hydrolysis. Carbapenemases were chromosomal (VIM-2) or plasmid-borne (IMP-28, IMP-13) and associated with class-1 integrons located in Tn402-like transposition modules. Our findings highlighted that cephalosporin/ß-lactamase inhibitors are potential selectors of MDR/XDR P. aeruginosa strains producing PDC variants or metallo-ß-lactamases. Judicious use of these agents is encouraged.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Proteínas de Bactérias , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Tazobactam/farmacologia , Tazobactam/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/uso terapêutico
15.
Int J Antimicrob Agents ; 59(1): 106456, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34688835

RESUMO

The emergence of 16S rRNA methyltransferases (RMTs) in Gram-negative pathogens bearing other clinically relevant resistance mechanisms, such as carbapenemase-producing Enterobacterales (CPE), is becoming an alarming concern. We investigated the prevalence, antimicrobial susceptibility, resistance mechanisms, molecular epidemiology and genetic support of RMTs in CPE isolates from Spain. This study included a collection of 468 CPE isolates recovered during 2018 from 32 participating Spanish hospitals. MICs were determined using the broth microdilution method, the agar dilution method (fosfomycin) or MIC gradient strips (plazomicin). All isolates were subjected to hybrid whole-genome sequencing (WGS). Sequence types (STs), core genome phylogenetic relatedness, horizontally acquired resistance mechanisms, plasmid analysis and the genetic environment of RMTs were determined in silico from WGS data in all RMT-positive isolates. Among the 468 CPE isolates evaluated, 24 isolates (5.1%) recovered from nine different hospitals spanning five Spanish regions showed resistance to all aminoglycosides and were positive for an RMT (21 RmtF, 2 ArmA and 1 RmtC). All RMT-producers showed high-level resistance to all aminoglycosides, including plazomicin, and in most cases exhibited an extensively drug-resistant susceptibility profile. The RMT-positive isolates showed low genetic diversity and were global clones of Klebsiella pneumoniae (ST147, ST101, ST395) and Enterobacter cloacae (ST93) bearing blaOXA-48, blaNDM-1 or blaVIM-1 carbapenemase genes. RMTs were harboured in five different multidrug resistance plasmids and linked to efficient mobile genetic elements. Our findings highlight that RMTs are emerging among clinical CPE isolates from Spain and their spread should be monitored to preserve the future clinical utility of aminoglycosides and plazomicin.


Assuntos
Farmacorresistência Bacteriana/genética , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Ribossômico 16S/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Espanha
16.
Antimicrob Agents Chemother ; 66(2): e0167621, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34807754

RESUMO

The global distribution of carbapenemases such as KPC, OXA-48, and metallo-ß-lactamases (MBLs) gives cause for concern, as these enzymes are not inhibited by classical ß-lactamase inhibitors (BLIs). The current development of new inhibitors is one of the most promising highlights for the treatment of multidrug-resistant bacteria. The activity of cefepime in combination with the novel BLIs zidebactam, taniborbactam, and enmetazobactam was studied in a collection of 400 carbapenemase-producing Enterobacterales (CPE). The genomes were fully sequenced and potential mechanisms of resistance to cefepime/BLI combinations were characterized. Cefepime resistance in the whole set of isolates was 79.5% (MIC50/90 64/≥128mg/L). The cefepime/zidebactam and cefepime/taniborbactam combinations showed the highest activity (MIC50/90 ≤0.5/1 and ≤0.5/2 mg/L, respectively). Cefepime/zidebactam displayed high activity, regardless of the carbapenemase or extended-spectrum ß-lactamase (ESBL) considered (99% of isolates displayed MIC ≤2 mg/L). Cefepime/taniborbactam displayed excellent activity against OXA-48- and KPC-producing Enterobacterales and lower activity against MBL-producing isolates (four strains yielded MICs ≥16 mg/L: 2 NDM producers with an insertion in PBP3, one VIM-1 producer with nonfunctional OmpK35, and one IMP-8 producer). Cefepime/enmetazobactam displayed the lowest activity (MIC50/90 1/≥128 mg/L), with MICs ≥16 mg/L for 49 MBL producers, 40 OXA-48 producers (13 with amino acid changes in OmpK35/36, 4 in PBPs and 11 in RamR) and 25 KPC producers (most with an insertion in OmpK36). These results confirm the therapeutic potential of the new ß-lactamase inhibitors, shedding light on the activity of cefepime and BLIs against CPE and resistance mechanisms. The cefepime/zidebactam and cefepime/taniborbactam combinations are particularly highlighted as promising alternatives to penicillin-based inhibitors for the treatment of CPE.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias , Ácidos Borínicos , Ácidos Carboxílicos , Cefepima/farmacologia , Ciclo-Octanos , Testes de Sensibilidade Microbiana , Penicilinas , Piperidinas , Triazóis , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo
17.
Front Microbiol ; 12: 752070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675911

RESUMO

Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.

18.
J Med Chem ; 64(9): 6310-6328, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33913328

RESUMO

Pseudomonas aeruginosa, a major cause of nosocomial infections, is considered a paradigm of antimicrobial resistance, largely due to hyperproduction of chromosomal cephalosporinase AmpC. Here, we explore the ability of 6-pyridylmethylidene penicillin-based sulfones 1-3 to inactivate the AmpC ß-lactamase and thus rescue the activity of the antipseudomonal ceftazidime. These compounds increased the susceptibility to ceftazidime in a collection of clinical isolates and PAO1 mutant strains with different ampC expression levels and also improved the inhibition kinetics relative to avibactam, displaying a slow deacylation rate and involving the formation of an indolizine adduct. Bromide 2 was the inhibitor with the lowest KI (15.6 nM) and the highest inhibitory efficiency (kinact/KI). Computational studies using diverse AmpC enzymes revealed that the aromatic moiety in 1-3 targets a tunnel-like site adjacent to the catalytic serine and induces the folding of the H10 helix, indicating the potential value of this not-always-evident pocket in drug design.


Assuntos
Imunidade Inata/efeitos dos fármacos , Penicilinas/química , Penicilinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sulfonas/química , Resistência beta-Lactâmica/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Cinética , Testes de Sensibilidade Microbiana , beta-Lactamases
19.
Antibiotics (Basel) ; 10(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672671

RESUMO

Treatment of infections caused by Acinetobacter spp., particularly A. baumannii, is a major clinical problem due to its high rates of antibiotic resistance. New strategies must be developed; therefore, restoration of ß-lactam efficacy through the use of ß-lactamase inhibitors is paramount. Activities of the antibiotics imipenem, meropenem, cefepime, and sulbactam in combination with the penicillin-sulfone inhibitor LN-1-255 were tested by microdilution against 148 isolates of Acinetobacter spp. collected in 14 hospitals in Spain in 2020. Relevantly, the MIC90 (i.e., minimum concentration at which 90% of isolates were inhibited) of antibiotics in combination with LN-1-255 decreased 4- to 8-fold for all of the Acinetobacter isolates. Considering only the carbapenem-resistant A. baumannii isolates, which produce carbapenem-hydrolyzing class D ß-lactamases, the addition of LN-1-255 decreased the resistance rates from 95.1% to 0% for imipenem, from 100% to 9.8% for meropenem, from 70.7% to 7.3% for cefepime, and sulbactam resistance rates from 9.8% to 0% and intermediate susceptibility rates from 53.7% to 2.4%. The inhibitor also decreased the minimum inhibitory concentrations (MICs) when tested against non-carbapenem-resistant Acinetobacter spp. isolates. In conclusion, combining LN-1-255 with imipenem, meropenem, cefepime, and sulbactam to target A. baumannii, and especially carbapenem-resistant isolates, represents an attractive option that should be developed for the treatment of infections caused by this pathogen.

20.
J Antimicrob Chemother ; 76(6): 1498-1510, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33677560

RESUMO

BACKGROUND: Imipenem/relebactam is a novel carbapenem/ß-lactamase inhibitor combination, developed to act against carbapenemase-producing Enterobacterales (CPE). OBJECTIVES: To assess the in vitro activity of imipenem/relebactam against a Spanish nationwide collection of CPE by testing the susceptibility of these isolates to 16 widely used antimicrobials and to determine the underlying ß-lactam resistance mechanisms involved and the molecular epidemiology of carbapenemases in Spain. MATERIALS AND METHODS: Clinical CPE isolates (n = 401) collected for 2 months from 24 hospitals in Spain were tested. MIC50, MIC90 and susceptibility/resistance rates were interpreted in accordance with the EUCAST guidelines. ß-Lactam resistance mechanisms and molecular epidemiology were characterized by WGS. RESULTS: For all isolates, high rates of susceptibility to colistin (86.5%; MIC50/90 = 0.12/8 mg/L), imipenem/relebactam (85.8%; MIC50/90 = 0.5/4 mg/L) and ceftazidime/avibactam (83.8%, MIC50/90 = 1/≥256 mg/L) were observed. The subgroups of isolates producing OXA-48-like (n = 305, 75.1%) and KPC-like enzymes (n = 44, 10.8%) were highly susceptible to ceftazidime/avibactam (97.7%, MIC50/90 = 1/2 mg/L) and imipenem/relebactam (100.0%, MIC50/90 = ≤0.25/1 mg/L), respectively.The most widely disseminated high-risk clones of carbapenemase-producing Klebsiella pneumoniae across Spain were found to be ST11, ST147, ST392 and ST15 (mostly associated with OXA-48) and ST258/512 (in all cases producing KPC). CONCLUSIONS: Imipenem/relebactam, colistin and ceftazidime/avibactam were the most active antimicrobials against all CPEs. Imipenem/relebactam is a valuable addition to the antimicrobial arsenal used in the fight against CPE, particularly against KPC-producing isolates, which in all cases were susceptible to this combination.


Assuntos
Compostos Azabicíclicos , Imipenem , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Espanha , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...